
Interference of quantum beats in Hong–Ou–Mandel
interferometry

Jing Qiu,1 Jun-Heng Shi,1 Yong-Sheng Zhang,2,3 Shen-Sheng Han,1 and You-Zhen Gui1,4

1Key Laboratory for QuantumOptics and Center for Cold Atom Physics, Shanghai Institute of Optics and FineMechanics,
Chinese Academy of Sciences, Shanghai 201800, China

2Lab of Quantum Information, University of Science and Technology of China, Hefei 230026, China
3e-mail: yshzhang@ustc.edu.cn

4e-mail: yzgui@siom.ac.cn

Received December 24, 2014; revised February 20, 2015; accepted February 24, 2015;
posted February 27, 2015 (Doc. ID 231297); published April 10, 2015

Quantum beats can be produced in fourth-order interference such as in a Hong–Ou–Mandel (HOM) interferometer
by using photons with different frequencies. Here we present theoretically the appearance of interference of quan-
tum beats when the HOM interferometer is combined with a Franson-type interferometer. This combination can
make the interference effect of photons with different colors take place not only within the coherence time of
downconverted fields but also in the region beyond that. We expect that it can provide a new method in quantum
metrology, as it can realize the measurement of time intervals in three scales. © 2015 Chinese Laser Press
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1. INTRODUCTION
Interference of two photons has been widely studied because
it provides important information about the optical field, such
as the properties of photon statistics. Since Hong–Ou–Mandel
(HOM) interferometry was first presented in 1987 [1], it has
been used in many areas such as testing the violation of Bell’s
inequality [2,3], dispersion cancellation [4–7], quantum com-
puting [8,9], quantum communication [7,10–12], quantum
metrology [13], and quantum imaging [5,14,15].

Usually, HOM interference experiments are carried out
with two incident photons at the same frequencies. However,
quantum beats will arise when the two photons have different
frequencies [16–20]. This information can be used to study the
nondegenerate spontaneous parametric downconversion
(SPDC), which is very useful for quantum communications
[21–23]. In this paper we will investigate the interference
effect of quantum beats when the HOM interferometer is
combined with a Franson-type interferometer [24–26]. With
this combination, we can show that photons with different
colors can not only interfere within their coherence lengths
but also interfere beyond their coherence lengths. In this case,
we can realize the measurement in three scales, i.e., the
coherence time of the pump photons, the coherence time
of downconverted photons, and a much smaller time interval
shown in the beat, which can improve the measurement
sensitivity in experiments.

2. MODEL AND ANALYTICAL SOLUTION
Our proposed scheme is sketched in Fig. 1. A type II degen-
erate nonlinear crystal is pumped by a continuous-wave (CW)
laser [27] and generates pairs of frequency anticorrelated pho-
tons, referred to as the signal and the idler. The photon pairs
are sent into an HOM interferometer. In each arm, there is an

unbalanced Mach–Zehnder (MZ) interferometer, so that both
the signal and the idler arms are divided into two paths. Before
the MZ interferometer in the signal arm, we introduce a tun-
able time delay τ1 through which we can control the fourth-
order interference. The lengths of the shorter (longer) paths in
the signal and the idler arms have the same value when τ1 � 0.
The difference between the longer path τ2 and the shorter
path τ3 is much greater than the coherence time of the down-
conversion photon pairs τc, i.e., τ2–τ3 ≫ τc. Two filters IF1 and
IF2 with different central frequencies are placed in front of
detectors D1 and D2, respectively.

The biphoton state that is generated from the SPDC process
can be given by [28,29]

jψi �
Z

dωsdωiΦ�ωs;ωi�â†s�ωs�â†i �ωi�j0i; (1)

where Φ�ωs;ωi� is the biphoton spectral function, which is de-
termined by the phase-matching conditions. As we introduce a
tunable time delay τ1 in the signal arm and an MZ interferom-
eter in each arm, it generates a phase shift,

exp�−iωsτ1��1� exp�−iωsτ2���1� exp�−iωiτ2��; (2)

if we assume the lengths of the shorter paths τ3 in each arm
have a value of 0. Then the biphoton state that interferes on
the beam splitter should be rewritten as

jψi �
Z

dωsdωiΦ�ωs;ωi� exp�−iωsτ1��1

� exp�−iωsτ2���1� exp�−iωiτ2��â†s�ωs�â†i �ωi�j0i: (3)

The positive electrical field operators at detectors D1 and
D2 are defined by

82 Photon. Res. / Vol. 3, No. 3 / June 2015 Qiu et al.

2327-9125/15/030082-04 © 2015 Chinese Laser Press

http://dx.doi.org/10.1364/PRJ.3.000082


Ê���
1 �t1� �

Z
dω1â1�ω1�g1�ω1� exp�−iω1t1�; (4)

Ê���
2 �t2� �

Z
dω2â2�ω2�g2�ω2� exp�−iω2t2�; (5)

respectively, where g1�ω1� � exp�−��ω1 − ωa�2∕2σ21��,
g2�ω2� � exp�−��ω2 − ωb�2∕2σ22�� are optical spectral functions
of filters in front of detectors D1 and D2, with their central
frequencies at ωa and ωb, respectively. For simplicity, we
set the bandwidth of each filter as σ1 � σ2 � σ in the follow-
ing. With the state in Eq. (3) and the field operators in Eqs. (4)
and (5), we can calculate the detection amplitude:

h0jÊ���
1 �t1�Ê���

2 �t2�jψi

� h0j
Z

dωsdωidω1dω2Φ�ωs;ωi�g1�ω1�g2�ω2�

× exp�−iω1t1� exp�−iω2t2� exp�−iωsτ1�
× �1� exp�−iωsτ2���1� exp�−iωiτ2��
× â1�ω1�â2�ω2�â†s�ωs�â†i �ωi�j0i: (6)

Then the coincidence count rate between the two detectors is

R�τ1;τ2��
Z
dt1dt2G�2��t1; t2�

�
Z
dt1dt2jh0jÊ���

1 �t1�Ê���
2 �t2�jψij2

�
Z
dωsdωifΦ�ωs;ωi�Φ��ωs;ωi�−Φ�ωs;ωi�

×Φ��ωi;ωs�exp�−i�ωs −ωi�τ1�g�cos�ωsτ2��1�

× �cos�ωiτ2��1�
�
exp

�
−

�ωs −ωa�2
σ2

�
exp

�
−

�ωi−ωb�2
σ2

�

�exp
�
−

�ωi−ωa�2
σ2

�
×exp

�
−

�ωs −ωb�2
σ2

��
: (7)

For the frequency anticorrelated photon pairs, if the central
frequencies of the degenerated photons are ω0, the frequen-
cies of the signal and idler photons are ωs � ω0 � ω,

ωi � ω0 − ω, respectively. In this case, the biphoton spectral
function Φ�ωs;ωi� can be replaced by f �ω� � �sin�DLω∕2�∕
DLω∕2� for the type II SPDC [30,31] process, with D and L
denoting the inverse group velocity difference for the bipho-
ton and the length of the crystal, respectively. Then Eq. (7) can
be rewritten as

R�τ1; τ2� �
Z

dt1dt2G�2��t1; t2�

�
Z

dt1dt2jh0jÊ���
1 �t1�Ê���

2 �t2�jψij2

�
Z

dωfjf �ω�j2 � jf �−ω�j2 − �f �ω�f ��−ω�

× exp�−2iωτ1� � c:c:�g�cos��ω0 � ω�τ2� � 1�

× �cos��ω0 − ω�τ2� � 1�
�
exp

�
−

�ω0 � ω − ωa�2
σ2

�

× exp
�
−

�ω0 − ω − ωb�2
σ2

�
� exp

�
−

�ω0 − ω − ωa�2
σ2

�

× exp
�
−

�ω0 � ω − ωb�2
σ2

��
: (8)

As DLω ≪ 1, the analytical results can be approximately
given as

R�τ1; τ2� � 1 − exp
�
−

σ2τ21
2

�
cos��ωa − ωb�τ1�

−

1
2

exp
�
−

σ2�τ1 − τ2�2
2

�
cos��ωa − ωb��τ1 − τ2��

−

1
2

exp
�
−

σ2�τ1 � τ2�2
2

�
cos��ωa − ωb��τ1 � τ2��:

(9)

3. RESULTS AND THEORETICAL
EXPLANATION
We then numerically calculate the coincidence count rate with
feasible experimental parameters. A CW laser with a central
wavelength of 406 nm is used to pump a type II degenerate
beta-barium borate crystal. In order to observe the quantum
beats, the central wavelengths of two filters are set at 800 and
824 nm. The fixed time delay τ2 � 6 ps is much greater than
the coherence time of the downconverted fields, which is
typically 0.1–1 ps [32].

The simulated results are shown in Fig. 2. Three quantum
beats emerge in different regions as we adjust the time delay
τ1 continuously. Two quantum beats with 50% visibility are
seen in the two side regions, while a quantum beat with
100% visibility is seen in the middle. This result can be under-
stood by analyzing all the different paths that the biphotons
choose to take during the measurement of coincidence events
between D1 and D2. There are three stages occurring along
with the increased time delay:

(1) First, as illustrated in Fig. 3(a), when we scan τ1 into
the region jτ1j ≈ 0 ps ≪ τc, there are two alternative paths, the
longer path and the shorter path, for the photon pairs to
choose to take. Besides, as biphotons arrive at the last beam
splitter, we cannot tell whether the photons are both reflected
or transmitted. In this sense, this interferometer is the
combined form of the Franson and the HOM interferometer.
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Fig. 1. Schematic diagram of the scheme. Frequency anticorrelated
photon pairs are generated from the spontaneous parametric down-
conversion source [nonlinear crystal (NLC)]. The signal and the idler
photons are sent into an unbalanced MZ interferometer. In the signal
arm, a tunable time delay τ1 is introduced outside the MZ interferom-
eter. Photon pairs are combined at the last beam splitter (BS), and we
can observe the interference of quantum beats by observing the
coincidence count rates between detectors D1 and D2. IF1 and IF2
are filters with different central frequencies set in front of the detec-
tors. M represents the reflecting mirrors.
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A quantum beat arises whether the photon pairs choose the
longer path or the shorter one. As we cannot distinguish
which paths the photon pairs choose to follow, quantum beats
interfere with each other with 100% visibility.

(2) Second, as shown in Fig. 3(b), when jτ1j is increased to
jτ1j ≈ τ2 � 6 ps, quantum beats arise under the condition
where the signal photons choose the shorter path while the
idler photons choose the longer one when τ1 � 6 ps, and
the signal photons choose the longer path while the idler pho-
tons choose the shorter one when τ1 � −6 ps. At this time,
interference occurs, albeit with 50% visibility, at the positions
τ1 � 6 ps and τ1 � −6 ps, because of the presence of the pos-
sibility that the idler photons take the other path, i.e., the idler
photons take the shorter path when τ1 � 6 ps and the longer
path when τ1 � −6 ps, which leads to a background coinci-
dence rate independent of τ1.

(3) Lastly, when jτ1j reaches the region of jτ1j ≫ τ2, pho-
ton pairs arriving at the beam splitter can be distinguished,
and no interferences take place.

It should be noted that the interval τ2 is only limited by the
coherence time of the pump field.

4. DISCUSSION AND CONCLUSION
From what we have described above, we find that the three
interference fringes in Fig. 2 are caused by both the HOM and

the Franson-type interference; this indicates that although
photons with different colors are distinguishable, the interfer-
ence effect can also take place in the region far beyond the
coherence time of the downconverted fields through the com-
bination of these two kinds of interferometers. If we set
limitations on the bandwidth of the downconverted field,
the longer the coherence time of the pump laser is, the
broader the middle envelope will be. If the coherence time
of the single photon is long enough, the middle envelope will
cover the other two envelopes. So through the quantum beats
generated in the combined form of the HOM and the Franson-
type interferometer, we can realize the measurement of time
intervals on the scale of coherence time of the pump field,
which is far beyond the single photon’s coherence time deter-
mined by the band filters, and improve the measurement sen-
sitivity via the beats, which could be measured according to
the frequency difference of the two photons.

Moreover, for comparison, in Fig. 4 we also show the simu-
lated result in the situation where the two filters in front of the
two detectors have the same central frequencies. The three
dips shown in the normalized coincidence count rate are
spaced by the same interval of τ2 � 6 ps and located around
τ1 � −6 ps, τ1 � 0 ps, and τ1 � 6 ps. In addition, it should be
noted that if the tunable time delay in this scheme is moved
into one of the longer paths, i.e., the shorter paths of the two
MZ interferometers are of equal value, one longer path is
fixed, and the other longer path becomes tunable, the inter-
ference fringes will be very complex and both second- and
fourth-order interference effects will emerge [33].

In conclusion, we have demonstrated a new scheme in
which we can observe the interference of quantum beats
when we combine the Franson-type interferometer with the
HOM interferometer. Usually we discuss the interference ef-
fect of photons with different colors in the HOM interferom-
eter within the coherence time of downconverted photons,
but with the combination of the Franson and the HOM inter-
ferometer we can realize interference effects in the region far
beyond the coherence time of the downconverted fields.
Moreover, we can also realize the measurements of time
intervals in the three scales shown above.
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Fig. 2. Normalized coincidence count rate, which shows three quan-
tum beats with the same interval of τ2 � 6 ps when the two filters in
front of the detectors have different central frequencies. The three
central dips are at the position of τ1 � −6 ps, τ1 � 0 ps, and τ1 � 6 ps.
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Fig. 3. Feynman’s path diagrams in different regions of τ1.
(a) jτ1j ≈ 0 ps ≪ τc, where each photon has two alternatives before
arriving at the beam splitter; (b)jjτ1j − τ2j ≈ 0 ps ≪ τc, where each
photon only has one choice before arriving at the beam splitter in
order to produce interference.
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Fig. 4. Normalized coincidence count rate when the two filters have
the same central frequencies. It shows three dips with the same inter-
val of τ2 � 6 ps. The three central dips are at the positions of
τ1 � −6 ps, τ1 � 0 ps, and τ1 � 6 ps.
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